neighbour$548178$ - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

neighbour$548178$ - перевод на греческий

SPATIAL INTERPOLATION METHOD
Natural neighbour; Natural neighbour interpolation; Natural neighbor

neighbour      
γειτονεύω
golden rule         
  • ''The Sermon on the Mount'' by [[Carl Bloch]] (1877) portrays [[Jesus]] teaching during the [[Sermon on the Mount]]
  • The golden rule, as described in numerous world religions
PRINCIPLE OF TREATING OTHERS AS ONE WANTS TO BE TREATED
Golden rule; Ethic of Reciprocity; Supreme Law; Golden Rule (ethics); User:For7thGen/Golden Rule; Silver Rule; Golden rule (ethics); Ethics of reciprocity; Christianity's Golden Rule; Golden rules; Reciprocity rule; Do unto others; Do as you would be done by; Silver rule; Ethic of reciprocity; The golden Rule; The Golden rule (ethics); The Golden Rule (ethics); The Silver Rule; The Golden Rule; Golden maxim; Golden Maxim; Do Unto Others; Love of neighbor; Love of neighbour; Regula aurea; Platinum Rule (principle); Love thy neighbour as thyself
χρυσός κανόνας

Определение

beggar-my-neighbour
¦ noun a card game for two players in which the object is to acquire one's opponent's cards.
¦ adjective (of national policy) self-aggrandizing at the expense of competitors.

Википедия

Natural neighbor interpolation

Natural neighbor interpolation is a method of spatial interpolation, developed by Robin Sibson. The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

The basic equation is:

G ( x ) = i = 1 n w i ( x ) f ( x i ) {\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}}

where G ( x ) {\displaystyle G(x)} is the estimate at x {\displaystyle x} , w i {\displaystyle w_{i}} are the weights and f ( x i ) {\displaystyle f(x_{i})} are the known data at ( x i ) {\displaystyle (x_{i})} . The weights, w i {\displaystyle w_{i}} , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting x {\displaystyle x} into the tessellation.

Sibson weights
w i ( x ) = A ( x i ) A ( x ) {\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}}

where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

Laplace weights
w i ( x ) = l ( x i ) d ( x i ) k = 1 n l ( x k ) d ( x k ) {\displaystyle w_{i}(\mathbf {x} )={\frac {\frac {l(\mathbf {x} _{i})}{d(\mathbf {x} _{i})}}{\sum _{k=1}^{n}{\frac {l(\mathbf {x} _{k})}{d(\mathbf {x} _{k})}}}}}

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.